Logo
Overview

2024 RCTF Writeup

May 28, 2024

Logo: Signin

logo = """
####################################################################################################
############################ # #####################################################################
####   ##       ########### ## ##          ###########                   ########             ######
####   ##           #########               ##########                   ######                  ###
####   ########       ########     ##########################    #############    ############    ##
####   ###########     ######    ###########   ##############    ############    ###################
###    #############    #####    ###########    #############    ############    ###################
###    ##############   ####    #############   #############   #############    ###################
###    ##############    ###    #############    ############   ##############     #################
###    ##############    ###   ###############   ############   ###############      ###############
###    ##############   ####   ###############   ############   #################      #############
###    #############    ####   ###############   ###########    ####################      ##########
###    ############    #####   ###############   ###########    ######################     #########
###    ####           ######   ##############    ###########    ########################     #######
###    ####         ########    #############    ###########    ##########################    ######
###    #########    #########   #############   ############    ##########################    ######
###    ##########    ########    ###########   #############    ##########################    ######
###    ###########    ########    #########    #############    #############    #########    ######
###    ############   #########     ######   ############       ###############     ####     #######
###   ############## ###########         ############                  #########           #########
#### ###############################  ##############################################    ############
####################################################################################################
"""

Logo: 2024

有长度限制,考虑对logo进行压缩。

首先把第一行和最后一行换成#*100

中间的内容通过相同字符长度进行压缩。正好是‘#’和’ ’间隔。

这里用39以后的字符防止出现单引号/双引号。

from RestrictedPython import compile_restricted, safe_builtins
from RestrictedPython.Eval import default_guarded_getitem
from RestrictedPython.Guards import full_write_guard
ROIS_LOGO = """
####################################################################################################
############################ # #####################################################################
####   ##       ########### ## ##          ###########                   ########             ######
####   ##           #########               ##########                   ######                  ###
####   ########       ########     ##########################    #############    ############    ##
####   ###########     ######    ###########   ##############    ############    ###################
###    #############    #####    ###########    #############    ############    ###################
###    ##############   ####    #############   #############   #############    ###################
###    ##############    ###    #############    ############   ##############     #################
###    ##############    ###   ###############   ############   ###############      ###############
###    ##############   ####   ###############   ############   #################      #############
###    #############    ####   ###############   ###########    ####################      ##########
###    ############    #####   ###############   ###########    ######################     #########
###    ####           ######   ##############    ###########    ########################     #######
###    ####         ########    #############    ###########    ##########################    ######
###    #########    #########   #############   ############    ##########################    ######
###    ##########    ########    ###########   #############    ##########################    ######
###    ###########    ########    #########    #############    #############    #########    ######
###    ############   #########     ######   ############       ###############     ####     #######
###   ############## ###########         ############                  #########           #########
#### ###############################  ##############################################    ############
####################################################################################################
"""
logo = "".join(ROIS_LOGO.strip().split("\n")[1:-1])
from string import printable
arr = []
lastchr = logo[0]
count = 1
for i in range(1,len(logo)):
    if logo[i] == lastchr:
        count += 1
    else:
        arr.append(count)
        lastchr = logo[i]
        count = 1

arr.append(count)
payload = bytearray([i+39 for i in arr]).decode();
print(len(payload))
loc = {}
cmdline = f"""t=100
c=f"{payload[::-1]}"
i=229
s="#"*t
while i:
    i=i-1
    s=s+"# "[i&1]*(ord(c[i])-39)
s=s+'#'*t
r=''
while s:
    r=r+s[:t]+'\\n';s=s[t:]
logo=r"""
exec(compile_restricted(cmdline,"<inline>","exec"),{
                "__builtins__": safe_builtins,
                "_getitem_": default_guarded_getitem,
                "_write_": full_write_guard,
            },loc)
assert ROIS_LOGO.strip() == loc["logo"].strip()
assert len(cmdline) < len(ROIS_LOGO) * .2024
print("[+] Payload Generated: ",cmdline)
print("[+] Length:",len(cmdline))

sec-image

import os
import shutil
from PIL import Image
import numpy as np
for i in range(10):
    if os.path.exists(f'flag{i}'):
        shutil.rmtree(f'flag{i}')
    os.mkdir(f'flag{i}')
    p=np.array(Image.open(f'flag{i}.png'))
    Image.fromarray(p[::2,::2]).save(f'flag{i}/0.png')
    Image.fromarray(p[::2,1::2]).save(f'flag{i}/1.png')
    Image.fromarray(p[1::2,::2]).save(f'flag{i}/2.png')
    Image.fromarray(p[1::2,1::2]).save(f'flag{i}/3.png')

ezlogin

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import os
from sklearn.manifold import TSNE
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import imageio as iio
import warnings
import functools
import signal
import hashlib
import time
import torchattacks
from PIL import Image
from torchvision import transforms
warnings.filterwarnings("ignore")

device = torch.device("cuda")

num_epochs = 50
batch_size = 512
learning_rate = 1e-4


# train_data = dataset = torchvision.datasets.EMNIST(root='data/',
                                    #   download=True,
                                    #   transform=transforms.ToTensor(),
                                    #   train=True,
                                    #   split='balanced')
# test_data = dataset = torchvision.datasets. EMNIST(root='data/',
#                                       download=True,
#                                       train=False,
#                                       transform=transforms.ToTensor(),split='balanced')

# train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
# test_loader = DataLoader(test_data, 1, shuffle=False)


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 2, 3, padding=1)
        self.conv2 = nn.Conv2d(2, 8, 3, padding=1)
        self.conv3 = nn.Conv2d(8, 32, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(32 * 3 * 3, 1024)
        self.fc2 = nn.Linear(1024, 512)
        self.fc3 = nn.Linear(512, 256)
        self.fc4 = nn.Linear(256, 128)
        self.fc5 = nn.Linear(128, 47)

    def forward(self, x):
        x = self.pool(self.conv1(x))
        x = self.pool(self.conv2(x))
        x = self.pool(self.conv3(x))
        x = x.view(-1, 32 * 3 * 3)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        x = self.fc5(x)
        return x

if __name__ == "a":
    try:
        loaded = False
        try:
            model = CNN().to(device)
            model.load_state_dict(torch.load('model.pt.state'))
            loaded = True
        except:
            model = CNN().to(device)
        try:
            feature = torch.tensor([[-6.19499969e+01, -1.56200895e+01, -3.52624054e+01, -1.34233132e-01,
                                     -6.48261490e+01, -1.47979248e+02, -5.15059547e+01, -1.14444227e+01,
                                     4.33434563e+01,  -3.69645386e+01,  2.00579977e+00,  4.74611549e+01,
                                     -6.33986130e+01, -1.57887411e+01, -2.87570419e+01, -5.35021248e+01,
                                     -1.73028266e+00, -3.61370316e+01, -7.58331375e+01, -7.46535110e+01,
                                     -7.24118347e+01, -4.76773834e+01,  6.51892662e+00, -5.07196846e+01,
                                     -1.03041328e+02,  4.72574463e+01,  9.03826065e+01,  5.30947495e+01,
                                     -5.03226738e+01, -1.50200531e+02, -3.46447792e+01, -4.23207245e+01,
                                     6.44030609e+01,  -5.05351334e+01, -4.11206970e+01, -2.18300457e+01,
                                     2.70750694e+01,  -1.00022865e+02,  3.77698517e+01, -3.60703392e+01,
                                     -6.88536682e+01,  1.16945248e+01, -4.62400284e+01, -4.79546585e+01,
                                     6.10636101e+01,  -1.12650543e+02, -1.34837357e+02,]], dtype=torch.float32).numpy()
            print("input image bytes(28 * 28):")
            # readres = readNumpy(28 * 28, np.uint8)
            readres=np.array([[154,254,  0,102,232,137, 76,112, 68, 52,137, 60,108,239, 46, 72,170,    226,248,107,115,194, 55,195,223,150, 48,237],   [162, 81,129, 26, 48,211, 61,196, 14,142,181, 20, 32,150,222,144, 43,    120, 63,  1,118, 99, 54,  0, 29,173,174,104],   [  0, 37, 98,113,151,219,115, 68, 75, 41, 11, 97,177,103,160,157, 71,    136,156,124,142,142,152,  3, 20, 15, 59,150],   [ 35,156, 66, 77,111, 12,  0,154,112,187,138,222,127,171, 85, 98,125,    105, 50, 69,112, 96,143, 69, 70,165, 26,154],   [ 90,168,120,114, 95,  4, 61, 80,215,213,162, 61,219,  0, 92, 99, 42,    142,122,185,154,195,172,164,145,111, 11, 53],   [119, 54, 89,211,131, 28,242,210,242, 69, 36,249, 86,165,218,203, 97,    232, 52,136, 66,110,136,106,190,  1,176, 89],   [219, 55,170, 34,206,174,115,252,226, 55, 94,158, 37, 62,100,153,  0,    179,254,254, 33,249,204,244,205,186, 78,197],   [254, 54,186,238,214,128,147, 39,168,112,138,143,162, 75,120, 42,199,    235,116, 18,184,251, 25,132,252,229,202,251],   [ 23,237,199,116,125, 41,105,205, 55,111,165, 13,197,254,  7, 37,144,    235,183,  0,188, 96,  8,  1,193,124, 26,220],   [193,156,152,195,254,125,231, 23,217,219,220,  0,183,193,222,250, 52,    187,213, 97, 96, 18, 24,  0,223, 41, 67,139],   [112,254, 76,236,219,173,133,129, 86,171,150, 80,210, 74,189,190,160,     98,130,254,227, 19, 88, 81,225,187,  8,113],   [212,205,221, 46,  0,210,111, 21,114,193, 48,214,188,158, 41, 27,238,    222,234,106,192, 91, 25,131,150, 75,159, 31],   [ 16,150,140,183,  7, 89,151, 11, 75,  2, 60,166, 14,140, 36, 50,150,    186, 17,107,184, 61,201, 52, 31,176, 38, 20],   [  0,158,140,121, 37,155,  4,182,137,167,141, 61, 93,145, 15,156, 30,    221,109,164,167, 34,232,122, 52,167,217, 75],   [243, 69,130,189,105,167,195,115, 31, 35, 58,170, 84,197, 85,225,216,    167,119, 32, 26,208, 19,123, 98,130,194, 57],   [203, 50,225,242,228,153, 39,231, 75, 79,143, 16,246, 13,  5, 83,229,     59, 12,212,254, 39, 90,246,135,133,110,158],   [ 63,146, 40,131,238,136,137, 45, 95,149, 11,119, 55,218,104,254,199,    101, 83,220, 20,124,243,114, 50,219, 20, 63],   [ 32,103,114,188,230, 39,  0,132, 97,254,254,165,175,144,  0,207,198,     13,211,189,100,157,145,161,117, 90,120,137],   [254, 60, 92,  5,202,159,167, 66, 75,165,252, 56,115,  8,233,240,180,     56, 65,179, 87,  5,107,162,151,155,222, 44],   [133, 73,223,189,205,  0,  7, 59, 52,  0, 76,249,120,  0, 35, 94,161,    160,  0,167, 69,225,  0, 71,199,199,250,153],   [ 38,154, 84,214,  0,162,193,238,158,159, 65,170, 23, 32, 80,186, 80,     90,163,165,175,212, 57,204,174, 81,184,183],   [203, 27, 84, 65, 66,119,221,215, 60, 55,  3, 39,166, 33, 75,142, 96,     76,179, 94,181, 15,220,107,122,130, 37, 51],   [ 99,247,113,161, 77,188,136, 74,  0, 81, 94,  6, 72, 51, 81, 89, 84,     55,169, 97, 42,183,209,112,229,  2,157, 49],   [199,181, 46,111,115, 51,151,150, 65,103, 86,167, 79,130,205, 47,110,     73, 95,177,221, 19,110, 86,142, 63, 85,140],   [174,189,224,133,251, 68,  0,  0,  0,  0,113, 24,145, 25,153,124,163,    106, 93,250, 60,117,253, 88, 58, 54,160,163],   [ 95, 36,111,253,199,192,138,209, 54,  7, 47,174, 67,188, 77,103,254,    223, 39, 55,196, 12,127,139,143,132, 67,233],   [ 64, 26,125,228,129,254,127,254,147,119,114, 85, 89,  6, 67,209,149,    254,144,236,254,205, 93, 20, 27,120,159,149],   [143,109, 32,250,190,121, 85,254,113,253, 66, 20, 74,106,189,121,117,    215, 43,254,190, 76,239,193,100,131,147, 32]])
            if isinstance(readres, None.__class__):
                print("Error!")
                os._exit(0)
            img_new_tensor = torch.tensor(readres.reshape(28, 28), dtype=torch.float32) / 255.0
            img_new_tensor = img_new_tensor.unsqueeze(0)
            model.eval()
            feature_new = model(img_new_tensor.to(device)).detach().cpu().numpy()
            dist = np.sqrt(np.sum((feature - feature_new)**2))
            print("distance:", dist)

            if dist < 6:
                print("flag{123213123232131231232131}")
        except:
            __import__("traceback").print_exc()
            print("exit!")
            os._exit(0)
    except:
        print("exit!")
        os._exit(0)
def crack():
    try:
        model = CNN().to(device)
        model.load_state_dict(torch.load('model.pt.state'))
        loaded = True
    except:
        model = CNN().to(device)
    model.eval()
    attack=torchattacks.FGSM(model,eps=1/255.0)
    attack.set_mode_targeted_by_label()
    dist=1e300
    # img=Image.new('L',(25,25),128)
    # img=transforms.ToTensor()(img)
   
    feature=feature = torch.tensor([[-6.19499969e+01, -1.56200895e+01, -3.52624054e+01, -1.34233132e-01,
                                     -6.48261490e+01, -1.47979248e+02, -5.15059547e+01, -1.14444227e+01,
                                     4.33434563e+01,  -3.69645386e+01,  2.00579977e+00,  4.74611549e+01,
                                     -6.33986130e+01, -1.57887411e+01, -2.87570419e+01, -5.35021248e+01,
                                     -1.73028266e+00, -3.61370316e+01, -7.58331375e+01, -7.46535110e+01,
                                     -7.24118347e+01, -4.76773834e+01,  6.51892662e+00, -5.07196846e+01,
                                     -1.03041328e+02,  4.72574463e+01,  9.03826065e+01,  5.30947495e+01,
                                     -5.03226738e+01, -1.50200531e+02, -3.46447792e+01, -4.23207245e+01,
                                     6.44030609e+01,  -5.05351334e+01, -4.11206970e+01, -2.18300457e+01,
                                     2.70750694e+01,  -1.00022865e+02,  3.77698517e+01, -3.60703392e+01,
                                     -6.88536682e+01,  1.16945248e+01, -4.62400284e+01, -4.79546585e+01,
                                     6.10636101e+01,  -1.12650543e+02, -1.34837357e+02,]], dtype=torch.float32).to(device)









    tensored = torch.rand(1, 1, 28, 28).to(device)
    tensored=torch.tensor([[[[ 6.0288e-01,  1.1362e+00,  5.9489e-05,  4.2852e-01,  9.1239e-01,
            5.7314e-01,  3.1315e-01,  4.4792e-01,  2.8514e-01,  2.0634e-01,
            5.4083e-01,  2.2748e-01,  4.1847e-01,  9.3224e-01,  1.8290e-01,
            2.8779e-01,  6.7119e-01,  8.8639e-01,  9.6913e-01,  4.1018e-01,
            4.4693e-01,  7.5400e-01,  2.2920e-01,  7.9548e-01,  9.1583e-01,
            5.9450e-01,  1.9110e-01,  9.1565e-01],
          [ 6.1580e-01,  3.3205e-01,  5.0228e-01,  1.0933e-01,  2.0404e-01,
            8.3139e-01,  2.2867e-01,  8.0309e-01,  7.0727e-02,  6.0615e-01,
            7.1967e-01,  8.6963e-02,  1.2258e-01,  5.8602e-01,  8.7928e-01,
            5.6752e-01,  1.7299e-01,  4.7335e-01,  2.8381e-01, -7.0812e-02,
            5.0558e-01,  3.9065e-01,  2.2163e-01, -7.6157e-02,  1.5868e-01,
            7.4678e-01,  7.0252e-01,  4.0050e-01],
          [-7.1028e-02,  1.1317e-01,  3.6623e-01,  4.1133e-01,  5.8208e-01,
            8.3339e-01,  4.8500e-01,  3.0252e-01,  3.1078e-01,  1.8317e-01,
            5.6958e-02,  3.8725e-01,  7.0658e-01,  3.9187e-01,  6.2303e-01,
            6.2260e-01,  2.7760e-01,  5.3419e-01,  6.4757e-01,  5.1142e-01,
            5.9661e-01,  5.4655e-01,  6.1045e-01, -4.4963e-03,  1.2481e-01,
            9.2860e-02,  2.6914e-01,  5.8491e-01],
          [ 1.4626e-01,  6.0557e-01,  2.5293e-01,  3.1025e-01,  4.7795e-01,
            5.3919e-02, -6.1463e-03,  6.0654e-01,  4.2319e-01,  7.4492e-01,
            5.5084e-01,  8.6132e-01,  4.9652e-01,  6.6520e-01,  3.3005e-01,
            3.7835e-01,  5.1184e-01,  4.1918e-01,  1.5690e-01,  2.5480e-01,
            4.5393e-01,  3.7624e-01,  5.4659e-01,  2.7696e-01,  2.4687e-01,
            7.1665e-01,  1.2837e-01,  6.1163e-01],
          [ 3.4478e-01,  6.6759e-01,  4.8163e-01,  4.8742e-01,  3.8671e-01,
            4.2637e-02,  2.8213e-01,  3.2243e-01,  8.7444e-01,  8.3748e-01,
            6.3151e-01,  2.3735e-01,  8.7876e-01, -3.9210e-02,  3.9525e-01,
            3.7733e-01,  1.6370e-01,  5.4120e-01,  4.7166e-01,  7.5188e-01,
            6.1869e-01,  8.4919e-01,  6.7780e-01,  6.4300e-01,  5.7504e-01,
            4.7048e-01,  5.7314e-02,  2.1222e-01],
          [ 4.7097e-01,  2.0323e-01,  3.3424e-01,  8.1913e-01,  5.3727e-01,
            9.9891e-02,  1.0234e+00,  8.4038e-01,  1.1350e+00,  2.5937e-01,
            1.4993e-01,  1.0317e+00,  3.5118e-01,  6.5605e-01,  8.7078e-01,
            7.9255e-01,  3.8220e-01,  8.6914e-01,  2.2715e-01,  5.4343e-01,
            2.7454e-01,  4.7493e-01,  5.3477e-01,  4.1217e-01,  7.1557e-01,
           -1.9818e-02,  6.7947e-01,  3.4895e-01],
          [ 8.1369e-01,  2.2739e-01,  6.2416e-01,  1.3195e-01,  8.0578e-01,
            6.8169e-01,  4.5694e-01,  9.9322e-01,  9.0871e-01,  2.2177e-01,
            3.5772e-01,  6.1249e-01,  1.4451e-01,  2.1517e-01,  3.8865e-01,
            6.2094e-01, -1.3825e-01,  7.2339e-01,  1.0589e+00,  1.2942e+00,
            9.6191e-02,  1.0701e+00,  8.1473e-01,  1.0005e+00,  8.0526e-01,
            7.1779e-01,  3.1163e-01,  7.7659e-01],
          [ 9.6146e-01,  1.6313e-01,  6.8609e-01,  9.1936e-01,  8.2348e-01,
            4.9940e-01,  5.5067e-01,  1.3772e-01,  6.5934e-01,  4.4348e-01,
            5.5429e-01,  5.5286e-01,  6.4212e-01,  2.9482e-01,  4.9009e-01,
            1.5313e-01,  7.6001e-01,  9.5773e-01,  4.4870e-01,  7.0587e-02,
            6.3051e-01,  9.7914e-01,  1.0483e-01,  5.0774e-01,  1.0615e+00,
            9.0353e-01,  7.8602e-01,  1.0277e+00],
          [ 1.1235e-01,  9.0992e-01,  7.2119e-01,  4.3361e-01,  4.7386e-01,
            1.4313e-01,  4.0376e-01,  8.1287e-01,  2.3066e-01,  4.5863e-01,
            6.8672e-01,  5.9185e-02,  7.6155e-01,  1.0895e+00,  1.0696e-02,
            1.1955e-01,  5.9255e-01,  9.0098e-01,  7.3014e-01, -2.2989e-01,
            7.0312e-01,  3.3254e-01, -3.0847e-02,  1.3195e-02,  7.2566e-01,
            4.7231e-01,  1.1454e-01,  8.7590e-01],
          [ 7.7808e-01,  6.2572e-01,  6.0420e-01,  7.3975e-01,  9.9742e-01,
            4.9199e-01,  8.9071e-01,  1.0273e-01,  8.1529e-01,  8.7398e-01,
            8.5837e-01, -9.3574e-02,  7.4139e-01,  7.6849e-01,  8.9423e-01,
            1.0978e+00,  2.1246e-01,  7.1140e-01,  7.9466e-01,  3.9209e-01,
            3.7501e-01,  7.2755e-02,  9.0850e-02,  2.2957e-02,  8.6281e-01,
            1.4462e-01,  2.7115e-01,  5.4973e-01],
          [ 4.4107e-01,  1.0529e+00,  2.9880e-01,  9.2260e-01,  8.4810e-01,
            6.4860e-01,  4.9903e-01,  4.9807e-01,  3.0239e-01,  6.5316e-01,
            5.8924e-01,  3.5929e-01,  8.7163e-01,  3.3495e-01,  7.8563e-01,
            7.7249e-01,  6.3549e-01,  3.7659e-01,  4.8119e-01,  1.1958e+00,
            8.3194e-01,  6.4911e-02,  3.4109e-01,  3.0952e-01,  8.7574e-01,
            7.5492e-01,  4.5016e-02,  4.5166e-01],
          [ 7.9193e-01,  8.0962e-01,  8.3640e-01,  1.7199e-01,  8.5984e-03,
            8.0833e-01,  4.3951e-01,  1.0346e-01,  4.5846e-01,  7.6686e-01,
            1.8354e-01,  8.5022e-01,  7.3330e-01,  5.7344e-01,  1.2528e-01,
            1.0215e-01,  9.3043e-01,  8.7269e-01,  9.3331e-01,  3.8962e-01,
            6.9048e-01,  3.3705e-01,  1.0508e-01,  5.4698e-01,  5.9770e-01,
            3.4513e-01,  6.2667e-01,  1.2362e-01],
          [ 6.3149e-02,  5.4332e-01,  5.2946e-01,  7.5011e-01,  2.2203e-02,
            3.5547e-01,  5.7432e-01,  4.8437e-02,  2.9004e-01, -1.6281e-01,
            2.3475e-01,  6.4043e-01,  4.9892e-02,  5.3533e-01,  1.2014e-01,
            1.9383e-01,  5.8046e-01,  7.5284e-01,  1.1419e-01,  4.6636e-01,
            7.3830e-01,  2.5486e-01,  8.2636e-01,  2.2003e-01,  1.1708e-01,
            7.0863e-01,  1.4147e-01,  7.2529e-02],
          [-5.0734e-03,  6.2114e-01,  5.3009e-01,  4.7144e-01,  1.8350e-01,
            6.1176e-01, -2.7301e-02,  6.4604e-01,  5.3030e-01,  6.4814e-01,
            5.6420e-01,  2.6860e-01,  4.0115e-01,  5.5545e-01,  6.3442e-02,
            6.0154e-01,  9.4468e-02,  8.3661e-01,  4.2637e-01,  6.2187e-01,
            6.8843e-01,  1.5162e-01,  9.3021e-01,  4.7756e-01,  1.6871e-01,
            6.7050e-01,  8.4901e-01,  2.9408e-01],
          [ 9.3974e-01,  2.6410e-01,  5.2163e-01,  7.3979e-01,  4.7082e-01,
            6.5093e-01,  7.8358e-01,  4.6225e-01,  1.0183e-01,  1.2838e-01,
            2.3783e-01,  6.5826e-01,  3.3046e-01,  7.5239e-01,  3.4042e-01,
            8.5900e-01,  8.2837e-01,  6.4222e-01,  4.5357e-01,  1.2401e-01,
            7.6350e-02,  7.8813e-01,  8.9284e-02,  4.9061e-01,  3.8516e-01,
            5.1263e-01,  7.8971e-01,  2.5493e-01],
          [ 7.9546e-01,  2.0633e-01,  8.9912e-01,  1.0262e+00,  9.0110e-01,
            5.9865e-01,  2.0708e-01,  8.6242e-01,  3.3956e-01,  3.3921e-01,
            5.4902e-01,  2.5711e-02,  9.4743e-01,  5.2793e-02,  2.2473e-02,
            3.2953e-01,  8.9930e-01,  2.3921e-01,  6.4219e-02,  8.1889e-01,
            1.0258e+00,  1.4573e-01,  3.5381e-01,  9.2302e-01,  5.0899e-01,
            4.7839e-01,  4.5472e-01,  6.4312e-01],
          [ 2.6405e-01,  5.7001e-01,  1.5210e-01,  4.7059e-01,  9.5783e-01,
            5.2991e-01,  5.2675e-01,  1.5340e-01,  3.6210e-01,  6.2503e-01,
            4.0578e-02,  4.7792e-01,  2.2813e-01,  7.9308e-01,  3.9085e-01,
            9.9410e-01,  7.8724e-01,  4.1535e-01,  3.3599e-01,  8.6563e-01,
            8.9724e-02,  4.7490e-01,  9.5913e-01,  4.2365e-01,  1.8861e-01,
            8.2992e-01,  6.7295e-02,  2.5372e-01],
          [ 1.2108e-01,  3.7644e-01,  4.5913e-01,  7.5106e-01,  9.0900e-01,
            1.8568e-01, -2.3777e-02,  5.2048e-01,  3.9792e-01,  9.8551e-01,
            1.0665e+00,  6.1337e-01,  6.7489e-01,  5.1058e-01, -1.3618e-02,
            7.7188e-01,  7.8193e-01,  5.6600e-02,  8.5688e-01,  7.6902e-01,
            4.1159e-01,  6.3866e-01,  4.9157e-01,  6.3980e-01,  4.3434e-01,
            3.4617e-01,  4.6667e-01,  5.3848e-01],
          [ 1.0579e+00,  2.3414e-01,  3.1658e-01, -8.6084e-02,  8.1349e-01,
            6.4511e-01,  6.8777e-01,  2.5055e-01,  2.8681e-01,  6.2201e-01,
            1.0176e+00,  2.0087e-01,  4.8428e-01,  5.5284e-02,  8.5649e-01,
            9.3845e-01,  7.0895e-01,  2.3617e-01,  2.6559e-01,  7.3822e-01,
            3.4822e-01,  2.6721e-02,  4.1820e-01,  5.5569e-01,  5.3522e-01,
            5.9240e-01,  8.4829e-01,  1.8631e-01],
          [ 5.0738e-01,  2.6644e-01,  8.5824e-01,  7.5214e-01,  8.4483e-01,
           -4.5763e-02,  3.8356e-02,  2.4536e-01,  2.2508e-01,  3.1382e-03,
            3.6618e-01,  1.1078e+00,  4.5653e-01, -6.4363e-04,  1.5056e-01,
            3.6254e-01,  6.6774e-01,  6.5680e-01, -4.6056e-03,  6.3040e-01,
            2.7773e-01,  8.9818e-01,  2.2342e-02,  3.0652e-01,  7.3080e-01,
            8.3147e-01,  9.7002e-01,  6.1938e-01],
          [ 1.5946e-01,  6.1125e-01,  3.4396e-01,  8.9923e-01,  1.3574e-02,
            6.4339e-01,  7.7911e-01,  8.9100e-01,  6.2722e-01,  5.2762e-01,
            2.7600e-01,  6.6731e-01,  1.2502e-01,  1.9134e-01,  3.0154e-01,
            7.4043e-01,  3.3239e-01,  3.7606e-01,  6.9304e-01,  6.4669e-01,
            6.7373e-01,  8.0201e-01,  2.3439e-01,  8.1852e-01,  6.8174e-01,
            3.7022e-01,  7.2829e-01,  7.3067e-01],
          [ 8.2974e-01,  1.1083e-01,  3.2454e-01,  2.2676e-01,  2.3869e-01,
            4.9026e-01,  8.9180e-01,  8.5484e-01,  2.5162e-01,  1.7870e-01,
           -4.0852e-02,  1.8148e-01,  6.2775e-01,  1.3101e-01,  2.8369e-01,
            5.7616e-01,  4.3123e-01,  3.0954e-01,  7.2911e-01,  3.7670e-01,
            6.7651e-01,  4.7760e-02,  8.7362e-01,  4.1234e-01,  5.3951e-01,
            5.3174e-01,  1.5039e-01,  2.1479e-01],
          [ 3.8540e-01,  1.0125e+00,  4.5503e-01,  6.5674e-01,  2.8749e-01,
            7.5905e-01,  5.4326e-01,  3.2885e-01, -1.0434e-01,  3.5212e-01,
            3.8181e-01,  1.8984e-02,  2.4018e-01,  2.2099e-01,  3.4744e-01,
            3.6183e-01,  3.5225e-01,  2.1809e-01,  6.7755e-01,  3.7800e-01,
            1.7447e-01,  7.0573e-01,  8.0136e-01,  4.7569e-01,  9.8392e-01,
            1.6173e-02,  6.1636e-01,  1.9482e-01],
          [ 7.8370e-01,  7.1147e-01,  2.0800e-01,  4.3978e-01,  4.9866e-01,
            2.1853e-01,  6.5248e-01,  5.9993e-01,  2.9794e-01,  4.3272e-01,
            3.9274e-01,  6.4736e-01,  3.1330e-01,  5.0629e-01,  8.3233e-01,
            1.8387e-01,  4.4380e-01,  2.9646e-01,  3.6449e-01,  7.1266e-01,
            8.5293e-01,  7.5409e-02,  3.8425e-01,  3.4207e-01,  5.6922e-01,
            2.7579e-01,  3.4487e-01,  5.4443e-01],
          [ 7.0230e-01,  7.7108e-01,  9.2445e-01,  5.1222e-01,  1.0493e+00,
            2.8528e-01, -1.4066e-01,  2.7808e-02,  2.3065e-02, -4.0014e-02,
            4.9922e-01,  6.1474e-02,  5.9423e-01,  8.5006e-02,  5.9977e-01,
            5.0050e-01,  6.4506e-01,  4.3328e-01,  3.5594e-01,  9.8738e-01,
            2.1839e-01,  4.5442e-01,  1.0981e+00,  3.7236e-01,  2.4674e-01,
            2.6815e-01,  6.2023e-01,  6.3304e-01],
          [ 3.7776e-01,  1.5990e-01,  4.6500e-01,  1.0565e+00,  7.6901e-01,
            7.7969e-01,  5.5995e-01,  8.5825e-01,  2.0155e-01, -4.3238e-03,
            1.8181e-01,  7.4459e-01,  2.8807e-01,  7.6745e-01,  3.2275e-01,
            3.9529e-01,  1.0352e+00,  8.8478e-01,  1.5051e-01,  2.3291e-01,
            7.9456e-01,  7.7804e-02,  5.0582e-01,  5.6546e-01,  5.7419e-01,
            5.5255e-01,  2.5548e-01,  9.1667e-01],
          [ 2.4563e-01,  8.7151e-02,  4.8151e-01,  8.6393e-01,  4.9966e-01,
            1.2342e+00,  4.3573e-01,  1.1570e+00,  5.7784e-01,  4.3662e-01,
            4.3337e-01,  3.5117e-01,  3.6724e-01,  3.8910e-02,  2.7161e-01,
            8.1971e-01,  5.7101e-01,  1.1323e+00,  5.6091e-01,  9.1287e-01,
            1.0213e+00,  8.5086e-01,  3.5015e-01,  6.2480e-02,  9.6676e-02,
            4.8563e-01,  6.4755e-01,  6.1303e-01],
          [ 5.7250e-01,  4.3544e-01,  1.1649e-01,  9.5708e-01,  7.3295e-01,
            4.4030e-01,  3.1571e-01,  1.0779e+00,  4.1958e-01,  9.6637e-01,
            2.7041e-01,  8.4789e-02,  2.9426e-01,  4.1899e-01,  7.3498e-01,
            4.8051e-01,  4.6492e-01,  8.3942e-01,  1.7416e-01,  1.0366e+00,
            7.4209e-01,  3.0254e-01,  9.8799e-01,  7.8156e-01,  4.0695e-01,
            5.2730e-01,  5.9528e-01,  1.4215e-01]]]], device='cuda:0',
       requires_grad=True)
    tensored=torch.tensor([[[[ 6.0183e-01,  1.1331e+00, -1.3945e-05,  4.2430e-01,  9.1187e-01,
            5.6688e-01,  3.1034e-01,  4.4660e-01,  2.8221e-01,  2.0750e-01,
            5.4614e-01,  2.2767e-01,  4.2403e-01,  9.2924e-01,  1.8320e-01,
            2.8885e-01,  6.7083e-01,  8.9040e-01,  9.6996e-01,  4.0850e-01,
            4.4688e-01,  7.5400e-01,  2.2421e-01,  7.8975e-01,  9.0751e-01,
            5.9550e-01,  1.9180e-01,  9.1863e-01],
          [ 6.1457e-01,  3.3005e-01,  4.9625e-01,  1.0556e-01,  1.9880e-01,
            8.2294e-01,  2.2961e-01,  7.9427e-01,  6.8526e-02,  5.9924e-01,
            7.1882e-01,  9.0209e-02,  1.2535e-01,  5.8580e-01,  8.7349e-01,
            5.6845e-01,  1.7026e-01,  4.7510e-01,  2.7932e-01, -7.0963e-02,
            5.0265e-01,  3.9118e-01,  2.2380e-01, -8.1462e-02,  1.4890e-01,
            7.4730e-01,  7.0031e-01,  4.0647e-01],
          [-7.1190e-02,  1.1456e-01,  3.6527e-01,  4.0955e-01,  5.8353e-01,
            8.3534e-01,  4.7966e-01,  2.9547e-01,  3.0880e-01,  1.7921e-01,
            5.1481e-02,  3.7765e-01,  7.0470e-01,  3.9020e-01,  6.1937e-01,
            6.1260e-01,  2.7703e-01,  5.3320e-01,  6.4587e-01,  5.0856e-01,
            5.9247e-01,  5.4697e-01,  6.0998e-01, -1.3610e-03,  1.0878e-01,
            9.2086e-02,  2.6374e-01,  5.8851e-01],
          [ 1.4642e-01,  6.0318e-01,  2.5273e-01,  3.0557e-01,  4.7717e-01,
            5.4624e-02, -1.3986e-02,  6.0689e-01,  4.2614e-01,  7.4380e-01,
            5.5029e-01,  8.6025e-01,  4.8990e-01,  6.6199e-01,  3.3108e-01,
            3.7729e-01,  5.0358e-01,  4.1579e-01,  1.5550e-01,  2.5433e-01,
            4.4257e-01,  3.7089e-01,  5.3936e-01,  2.7260e-01,  2.4756e-01,
            7.1054e-01,  1.2018e-01,  6.1151e-01],
          [ 3.4757e-01,  6.6652e-01,  4.8007e-01,  4.8409e-01,  3.8471e-01,
            4.1360e-02,  2.8241e-01,  3.1957e-01,  8.7148e-01,  8.3691e-01,
            6.3163e-01,  2.4043e-01,  8.7860e-01, -3.9612e-02,  3.9494e-01,
            3.7899e-01,  1.5575e-01,  5.3373e-01,  4.6879e-01,  7.3546e-01,
            6.1418e-01,  8.3589e-01,  6.7793e-01,  6.4887e-01,  5.7550e-01,
            4.6637e-01,  5.5677e-02,  2.1172e-01],
          [ 4.7226e-01,  2.0739e-01,  3.4174e-01,  8.2292e-01,  5.3806e-01,
            1.0440e-01,  1.0218e+00,  8.3894e-01,  1.1337e+00,  2.5774e-01,
            1.4880e-01,  1.0320e+00,  3.5197e-01,  6.5205e-01,  8.7084e-01,
            7.9014e-01,  3.8284e-01,  8.6343e-01,  2.1449e-01,  5.3598e-01,
            2.7256e-01,  4.6939e-01,  5.3806e-01,  4.1115e-01,  7.1858e-01,
           -1.9307e-02,  6.7990e-01,  3.4873e-01],
          [ 8.1844e-01,  2.2505e-01,  6.3084e-01,  1.2955e-01,  8.1577e-01,
            6.8635e-01,  4.5960e-01,  1.0045e+00,  9.0669e-01,  2.1967e-01,
            3.5902e-01,  6.1459e-01,  1.4342e-01,  2.1527e-01,  3.8593e-01,
            6.1294e-01, -1.3796e-01,  7.2262e-01,  1.0623e+00,  1.3046e+00,
            9.5788e-02,  1.0577e+00,  8.1152e-01,  9.9655e-01,  8.0728e-01,
            7.2040e-01,  3.0898e-01,  7.7352e-01],
          [ 9.6729e-01,  1.6908e-01,  6.9169e-01,  9.2401e-01,  8.3486e-01,
            5.0406e-01,  5.6620e-01,  1.4548e-01,  6.6348e-01,  4.4199e-01,
            5.5479e-01,  5.5355e-01,  6.4420e-01,  2.9702e-01,  4.8829e-01,
            1.5372e-01,  7.5503e-01,  9.5302e-01,  4.4603e-01,  6.8964e-02,
            6.4311e-01,  9.8132e-01,  1.0859e-01,  5.1073e-01,  1.0665e+00,
            9.0777e-01,  7.8715e-01,  1.0321e+00],
          [ 1.1102e-01,  9.1705e-01,  7.3000e-01,  4.4419e-01,  4.7482e-01,
            1.4260e-01,  4.0760e-01,  8.1824e-01,  2.3078e-01,  4.5524e-01,
            6.8247e-01,  5.8071e-02,  7.6399e-01,  1.0937e+00,  1.4122e-02,
            1.2663e-01,  5.8911e-01,  8.9864e-01,  7.2794e-01, -2.3183e-01,
            7.2209e-01,  3.4510e-01, -1.1247e-02,  1.0216e-02,  7.3514e-01,
            4.7735e-01,  1.2182e-01,  8.7938e-01],
          [ 7.7203e-01,  6.2602e-01,  6.0416e-01,  7.4008e-01,  1.0017e+00,
            4.8498e-01,  8.9410e-01,  1.0385e-01,  8.2208e-01,  8.7071e-01,
            8.5781e-01, -9.2331e-02,  7.4263e-01,  7.7026e-01,  8.9110e-01,
            1.0944e+00,  2.1360e-01,  7.1103e-01,  8.0248e-01,  3.9088e-01,
            3.7665e-01,  6.9454e-02,  8.6131e-02,  2.4893e-02,  8.7208e-01,
            1.4597e-01,  2.6949e-01,  5.5042e-01],
          [ 4.4113e-01,  1.0466e+00,  2.9536e-01,  9.1837e-01,  8.5094e-01,
            6.4387e-01,  5.0018e-01,  5.0399e-01,  3.0896e-01,  6.5867e-01,
            5.8687e-01,  3.6140e-01,  8.7345e-01,  3.2963e-01,  7.7959e-01,
            7.6818e-01,  6.2958e-01,  3.8116e-01,  4.8393e-01,  1.2172e+00,
            8.3255e-01,  6.4693e-02,  3.3501e-01,  3.1001e-01,  8.7589e-01,
            7.5742e-01,  4.5209e-02,  4.4983e-01],
          [ 7.9809e-01,  8.0656e-01,  8.3592e-01,  1.7404e-01,  1.5537e-02,
            8.0507e-01,  4.3430e-01,  9.7855e-02,  4.5777e-01,  7.6715e-01,
            1.8115e-01,  8.5164e-01,  7.3493e-01,  5.8034e-01,  1.2705e-01,
            1.0232e-01,  9.2705e-01,  8.7448e-01,  9.3301e-01,  3.9851e-01,
            6.9817e-01,  3.3664e-01,  1.0443e-01,  5.4239e-01,  5.9645e-01,
            3.4051e-01,  6.2836e-01,  1.2329e-01],
          [ 6.3783e-02,  5.4784e-01,  5.3141e-01,  7.4040e-01,  2.3979e-02,
            3.5237e-01,  5.7602e-01,  4.7115e-02,  2.8785e-01, -1.6184e-01,
            2.3283e-01,  6.4920e-01,  4.7756e-02,  5.4019e-01,  1.2220e-01,
            1.9224e-01,  5.7837e-01,  7.4996e-01,  1.0765e-01,  4.6649e-01,
            7.3734e-01,  2.5730e-01,  8.1332e-01,  2.1549e-01,  1.1076e-01,
            7.0702e-01,  1.4395e-01,  7.0201e-02],
          [-7.4216e-03,  6.2153e-01,  5.3045e-01,  4.7079e-01,  1.7587e-01,
            6.0710e-01, -2.7263e-02,  6.4655e-01,  5.3032e-01,  6.4479e-01,
            5.6637e-01,  2.6414e-01,  4.0679e-01,  5.6134e-01,  6.1996e-02,
            6.0691e-01,  9.7736e-02,  8.4430e-01,  4.2616e-01,  6.2229e-01,
            6.8477e-01,  1.4979e-01,  9.2357e-01,  4.7910e-01,  1.6992e-01,
            6.6975e-01,  8.4877e-01,  2.9303e-01],
          [ 9.4539e-01,  2.6781e-01,  5.2095e-01,  7.4461e-01,  4.5387e-01,
            6.4790e-01,  7.8286e-01,  4.6087e-01,  1.0516e-01,  1.2914e-01,
            2.3472e-01,  6.6450e-01,  3.3881e-01,  7.6108e-01,  3.3900e-01,
            8.5897e-01,  8.2290e-01,  6.4250e-01,  4.6126e-01,  1.2250e-01,
            8.2403e-02,  7.9182e-01,  9.1091e-02,  4.9397e-01,  3.8492e-01,
            5.1067e-01,  7.9125e-01,  2.5133e-01],
          [ 7.9638e-01,  2.0701e-01,  8.9998e-01,  1.0123e+00,  8.9924e-01,
            6.1194e-01,  2.0508e-01,  8.7714e-01,  3.3737e-01,  3.3824e-01,
            5.4846e-01,  3.4923e-02,  9.5551e-01,  5.2093e-02,  1.9192e-02,
            3.2956e-01,  8.9202e-01,  2.3645e-01,  6.0415e-02,  8.2699e-01,
            1.0328e+00,  1.4348e-01,  3.5257e-01,  9.2653e-01,  5.1261e-01,
            4.8053e-01,  4.5409e-01,  6.3957e-01],
          [ 2.5808e-01,  5.6338e-01,  1.5085e-01,  4.8231e-01,  9.4989e-01,
            5.3319e-01,  5.3061e-01,  1.6468e-01,  3.6901e-01,  6.3093e-01,
            3.7818e-02,  4.7828e-01,  2.2296e-01,  8.1360e-01,  3.9798e-01,
            9.8903e-01,  7.7904e-01,  4.1130e-01,  3.3027e-01,  8.7141e-01,
            8.9874e-02,  4.7944e-01,  9.5937e-01,  4.2781e-01,  1.9126e-01,
            8.3606e-01,  7.1399e-02,  2.5239e-01],
          [ 1.2307e-01,  3.8085e-01,  4.5274e-01,  7.5406e-01,  9.0879e-01,
            1.9486e-01, -3.0218e-02,  5.3887e-01,  3.9569e-01,  1.0054e+00,
            1.0902e+00,  6.2841e-01,  6.7628e-01,  5.2903e-01, -6.2745e-03,
            7.8162e-01,  7.7649e-01,  5.3411e-02,  8.4681e-01,  7.6299e-01,
            4.0771e-01,  6.3883e-01,  5.0394e-01,  6.4061e-01,  4.4024e-01,
            3.4866e-01,  4.6830e-01,  5.3808e-01],
          [ 1.0570e+00,  2.3428e-01,  3.2460e-01, -7.7438e-02,  8.1746e-01,
            6.5163e-01,  6.8952e-01,  2.5616e-01,  2.8494e-01,  6.2445e-01,
            1.0361e+00,  2.0589e-01,  4.7993e-01,  5.7002e-02,  8.7431e-01,
            9.3684e-01,  7.1176e-01,  2.3189e-01,  2.5901e-01,  7.3493e-01,
            3.4834e-01,  2.9198e-02,  4.1804e-01,  5.6902e-01,  5.4621e-01,
            5.9270e-01,  8.5254e-01,  1.8216e-01],
          [ 5.0931e-01,  2.6628e-01,  8.5866e-01,  7.5221e-01,  8.4197e-01,
           -5.4657e-02,  2.3840e-02,  2.4812e-01,  2.1561e-01, -9.8964e-03,
            3.4617e-01,  1.1136e+00,  4.6051e-01, -4.9158e-03,  1.4681e-01,
            3.6429e-01,  6.5646e-01,  6.4155e-01,  2.6962e-03,  6.3122e-01,
            2.7927e-01,  9.0141e-01,  1.5441e-02,  3.0391e-01,  7.3944e-01,
            8.2543e-01,  9.7200e-01,  6.1424e-01],
          [ 1.6109e-01,  6.1200e-01,  3.3933e-01,  8.9053e-01,  1.2685e-02,
            6.3852e-01,  7.7605e-01,  8.9602e-01,  6.2727e-01,  5.3226e-01,
            2.6726e-01,  6.6007e-01,  1.1367e-01,  1.7282e-01,  3.0375e-01,
            7.3988e-01,  3.2879e-01,  3.7334e-01,  6.7422e-01,  6.4509e-01,
            6.8196e-01,  8.1858e-01,  2.3444e-01,  8.1845e-01,  6.8228e-01,
            3.6365e-01,  7.3153e-01,  7.2874e-01],
          [ 8.2190e-01,  1.1075e-01,  3.2542e-01,  2.3088e-01,  2.3919e-01,
            4.7973e-01,  8.8109e-01,  8.5061e-01,  2.3921e-01,  1.8530e-01,
           -4.5518e-02,  1.7482e-01,  6.2579e-01,  1.3013e-01,  2.8357e-01,
            5.7316e-01,  4.1975e-01,  3.1367e-01,  7.2057e-01,  3.7517e-01,
            6.7830e-01,  5.4520e-02,  8.7112e-01,  4.1475e-01,  5.3532e-01,
            5.3351e-01,  1.5299e-01,  2.1696e-01],
          [ 3.8619e-01,  1.0056e+00,  4.5137e-01,  6.5311e-01,  2.9081e-01,
            7.6705e-01,  5.2778e-01,  3.1267e-01, -1.2548e-01,  3.2731e-01,
            3.7135e-01,  2.2293e-02,  2.5009e-01,  2.1048e-01,  3.4622e-01,
            3.5983e-01,  3.5104e-01,  2.1220e-01,  6.7556e-01,  3.7475e-01,
            1.6431e-01,  7.0422e-01,  8.0087e-01,  4.7100e-01,  9.7766e-01,
            1.8277e-02,  6.1969e-01,  1.9711e-01],
          [ 7.8155e-01,  7.1101e-01,  2.0455e-01,  4.4153e-01,  4.8890e-01,
            2.1791e-01,  6.4668e-01,  5.9280e-01,  2.9211e-01,  4.1581e-01,
            3.8185e-01,  6.4024e-01,  3.1393e-01,  5.0632e-01,  8.2283e-01,
            1.8128e-01,  4.4095e-01,  2.9088e-01,  3.6859e-01,  7.1484e-01,
            8.6203e-01,  7.5778e-02,  3.8975e-01,  3.4041e-01,  5.6930e-01,
            2.7090e-01,  3.4177e-01,  5.4593e-01],
          [ 6.9933e-01,  7.6190e-01,  9.1418e-01,  5.1421e-01,  1.0412e+00,
            2.7945e-01, -1.5315e-01,  3.3666e-02,  2.4592e-02, -4.8662e-02,
            4.8521e-01,  6.3433e-02,  5.8517e-01,  8.8535e-02,  5.8993e-01,
            4.9659e-01,  6.3918e-01,  4.2742e-01,  3.5838e-01,  9.8733e-01,
            2.2435e-01,  4.5459e-01,  1.0969e+00,  3.6596e-01,  2.4139e-01,
            2.5908e-01,  6.2124e-01,  6.3509e-01],
          [ 3.7773e-01,  1.5590e-01,  4.6437e-01,  1.0532e+00,  7.7038e-01,
            7.7253e-01,  5.5581e-01,  8.5207e-01,  1.9952e-01,  4.3578e-04,
            1.8705e-01,  7.2782e-01,  2.8181e-01,  7.5687e-01,  3.1991e-01,
            3.8863e-01,  1.0320e+00,  8.8327e-01,  1.5132e-01,  2.2798e-01,
            7.8556e-01,  7.4501e-02,  5.0239e-01,  5.6149e-01,  5.7039e-01,
            5.4560e-01,  2.5559e-01,  9.1737e-01],
          [ 2.4790e-01,  9.1259e-02,  4.8480e-01,  8.7040e-01,  5.0994e-01,
            1.2352e+00,  4.3721e-01,  1.1540e+00,  5.7661e-01,  4.4002e-01,
            4.3529e-01,  3.4350e-01,  3.6314e-01,  3.2342e-02,  2.7325e-01,
            8.1995e-01,  5.7767e-01,  1.1382e+00,  5.6145e-01,  9.2122e-01,
            1.0223e+00,  8.3465e-01,  3.4931e-01,  6.5662e-02,  9.8764e-02,
            4.7991e-01,  6.3983e-01,  6.0949e-01],
          [ 5.7333e-01,  4.3587e-01,  1.1823e-01,  9.6195e-01,  7.3666e-01,
            4.4254e-01,  3.1766e-01,  1.0803e+00,  4.1708e-01,  9.6695e-01,
            2.6936e-01,  8.2981e-02,  2.9549e-01,  4.1854e-01,  7.3636e-01,
            4.8149e-01,  4.6612e-01,  8.4265e-01,  1.7358e-01,  1.0392e+00,
            7.4474e-01,  2.9865e-01,  9.7939e-01,  7.7768e-01,  4.0470e-01,
            5.2455e-01,  5.9163e-01,  1.4044e-01]]]], device='cuda:0',
       requires_grad=True)
    # tensored = torch.rand(1, 1, 28, 28).to(device)
    # tensored=torch.clamp(tensored, min=0,max=1)
    # img_save=transforms.ToPILImage()(tensored[0])
    # img_save.save('out.png')
    while True:
        tensored.requires_grad_()
        embedding = model(tensored)[0]
        dist = torch.sqrt(torch.sum((feature - embedding)**2))
        if dist <= 6:
            tensor1 = tensored * 255

            array = tensor1.detach().cpu().numpy()

            array = array.astype(np.uint8)
            array1=torch.tensor(array).to("cuda:0")
            img_new_tensor = torch.tensor(array1.reshape(28, 28), dtype=torch.float32) / 255.0
            img_new_tensor = img_new_tensor.unsqueeze(0)
            feature_new = model(img_new_tensor.to(device)).detach().cpu().numpy()
            ddd = np.sqrt(np.sum((feature.cpu().numpy() - feature_new)**2))
            if ddd<6:
                print(array)
                exit(0)

            
        
        dist.backward()
        tensored = tensored.detach() - tensored.grad**3 *0.0000001
        tensored=torch.clamp(tensored, min=0,max=1)
        print(dist)
crack()

s1ayth3sp1re

反编译搜索3000找到

两坨数组拿出来异或即可。

arr1 = [164, 158, 95, 107, 4, 215, 108, 115, 5, 8, 25, 57, 41, 236, 231, 17, 85]
arr2 = [246,221,11,45,127,148,45,36,70,73,78,8,98,141,140,112,40]
for i in range(len(arr2)):
    print(chr(arr1[i] ^ arr2[i]),end="")

comment

留言 / 评论

如果暂时没有看到评论,请点击下方按钮重新加载。